L'impact du changement climatique sur l'arboriculture française : de la perturbation du développement fruitier aux conséquences socioéconomiques

Rachel Amouroux, Fanny Cornuéjols, Rose de Lamberterie, Louise Doglio, Carla Fleury, Marie Huyghe, Emilie Skowron En quoi l'observation de la **phénologie** des fruits révèle-elle les impacts du changement climatique ?

Comment les
arboriculteurs
perçoivent-ils le
dérèglement climatique
dans leur activité ?

Problématique et enjeux

(dans différents contextes géographiques et modes de production)

Quelles **solutions** peuvent être envisagées pour **adapter** la production fruitière aux enjeux du changement climatique ?

Quelles sont les conséquences socioéconomiques à prévoir dans les prochaines années ?

I. Contextualisation

Sommaire

- a) Choix: du sujet...
- b) ...des fruits
- c) ...des zones géographiques d'étude
- d) ...des acteurs à interroger
- e) Le fonctionnement général d'un verger

II. Changement climatique et perturbation du développement fruitier

- a) Des modifications climatiques progressives et extrêmes
- b) Impacts du changement climatique sur les cycles des arbres fruitiers

III. Conséquences et perspectives socio-économiques

- a) Des changements perceptibles
- b) Des adaptations multiples déjà appliquées ou à envisager

Orienté par une campagne de l'INRAE à propos de l'influence du climat sur l'agriculture et la forêt

Panneaux d'information exposés au jardin botanique de Montpellier

L'arboriculture fruitière en France :

https://www.lesfruitsetlegumesfrais.com/fruits-legumes/fruits-a-pepins/pomme/carte-identite

Les pêches

Production : 255 000 t/an (44% en LR)
4e producteur d'Europe
5ème fruit consommé

Les pommes

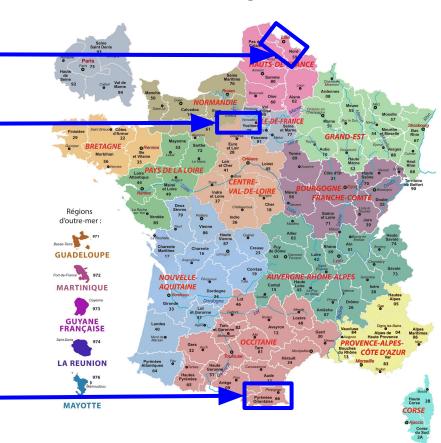
Production: 1,5 Mt/an
3e producteur d'Europe
1er fruit consommé (en
volume)

Les abricots

Production: + de 125 000 t/an (29% en LR) 2e producteur d'Europe

LR = Languedoc-Roussillon

c) Choix des zones géographiques



Étude suivant un gradient Sud-Nord

Nord

Yvelines - Perche

Pyrénées - Orientales

d) Choix des acteurs à interroger

Organismes de recherche et intermédiaires

- Inaki Garcia de Cortazar
 INRA Avignon
- Jean-Michel Legave INRA Montpellier

Anne Astier

Responsable du projet ClimAXXI

Vincent Matthieu

Ingénieur dans l'amélioration et l'innovation en fruits

Rafaël Martinez

Directeur de la Fédération des Fruits et Légumes du Roussillon

Exploitations fruitières

La Pommeraie du Courtil

7 ha, extensif - éco-responsable

Le Verger de l'Alloeu 15 ha, production intégrée

Jardins du Roussillon 250 ha, agriculture conventionnelle

Reart Vallée 600 ha, production intégrée

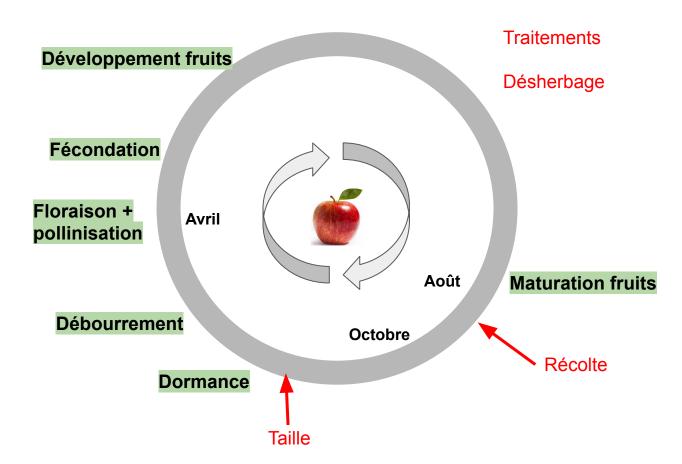
> SiBio 50 ha, agriculture biologique

Maison Gaillard 12 ha, agriculture biologique

Le Verger de la Reinette Verte 13 ha, agriculture biologique

http://ecoloriages.online/wp-content/uploads/2019/09/carte-de-france-des-regions-carte-des-regions-de-france-a-carte-de-la-france-avec-les-regions.jpg

e) Le fonctionnement général d'un verger



30 à 60 ans (exploitations extensives)

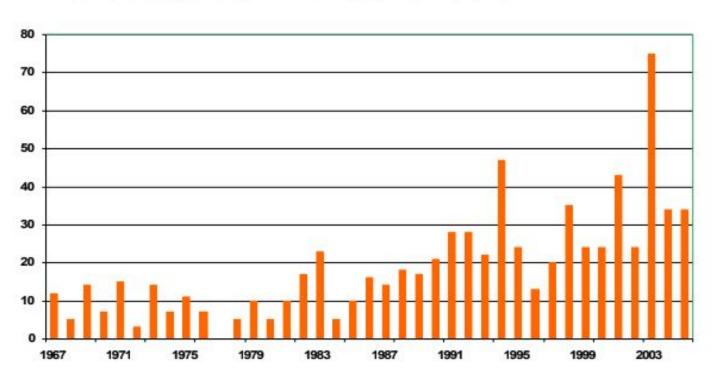
Schéma du fonctionnement pluriannuel du verger

Cycle annuel de fonctionnement du verger : cas de la pomme

II) Changement climatique et perturbation du développement fruitier

a) Des modifications climatiques progressives et extrêmes

Données de la chambre d'agriculture - Projet ClimaXXI Des changements progressifs...

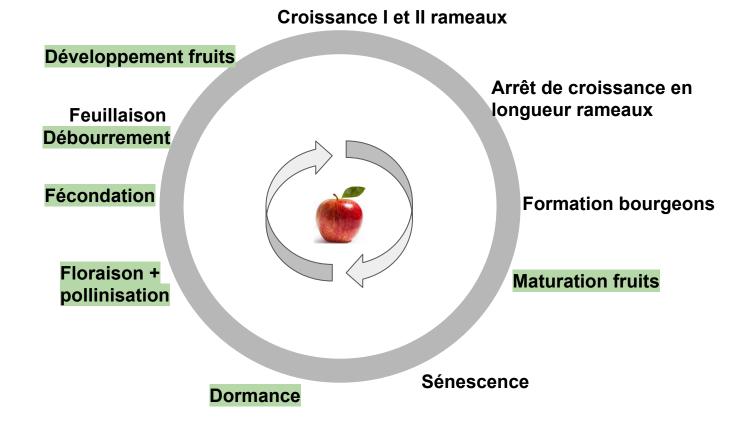

Température	Précipitations	Rayonnement	Vent	ETP
		*		
∠ des T moyennes	Modification de la répartition annuelle	∠ du rayonnement	∠ du vent	✓ du déficit
✓ du nb de jours estivaux (>25°C)	Printemps et été plus secs			hydrique (pluie - ETP
nb jours de gel , printemps +	Hiver plus arrosé			
précoces, automnes + doux	Très forte de la variabilité interannuelle			
variabilité interannuelle (juin)				

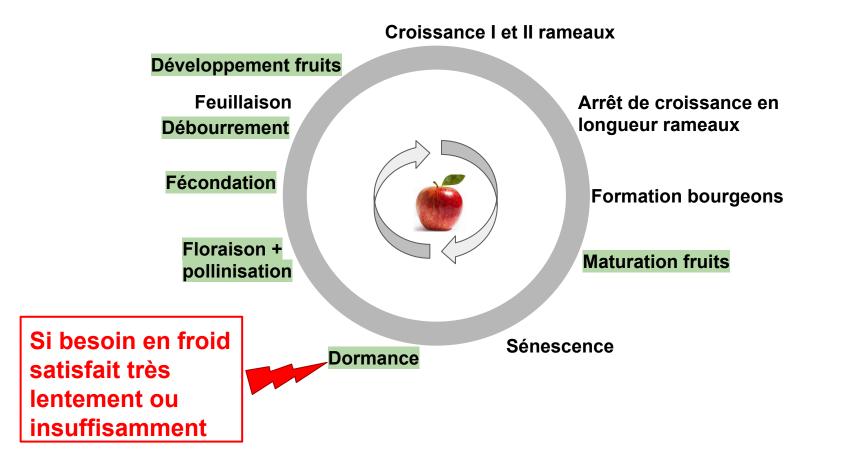
Des changements progressifs...

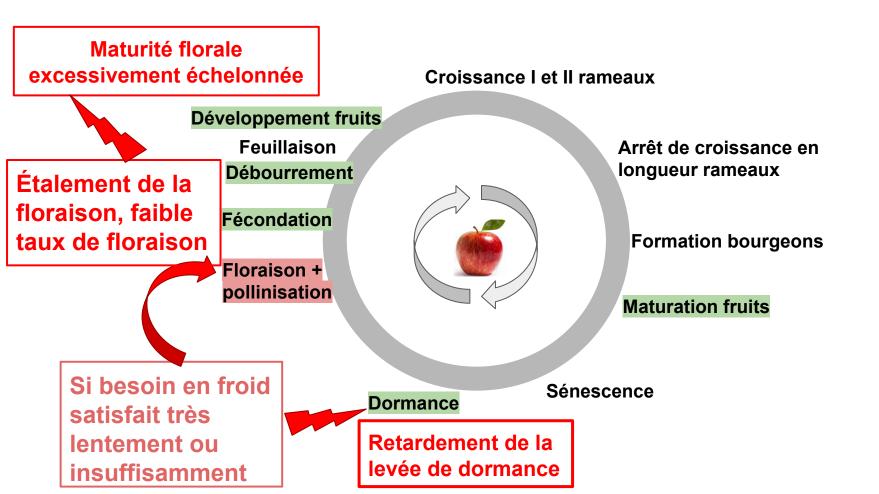
J.-M. Legave, L'arbre et la température

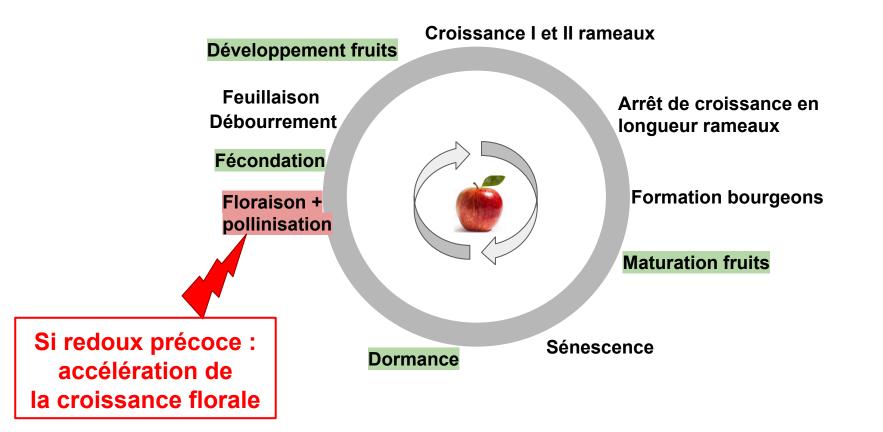
Tendance en **Europe** vers plus de périodes à températures élevées : exemple dans le Sud de la France

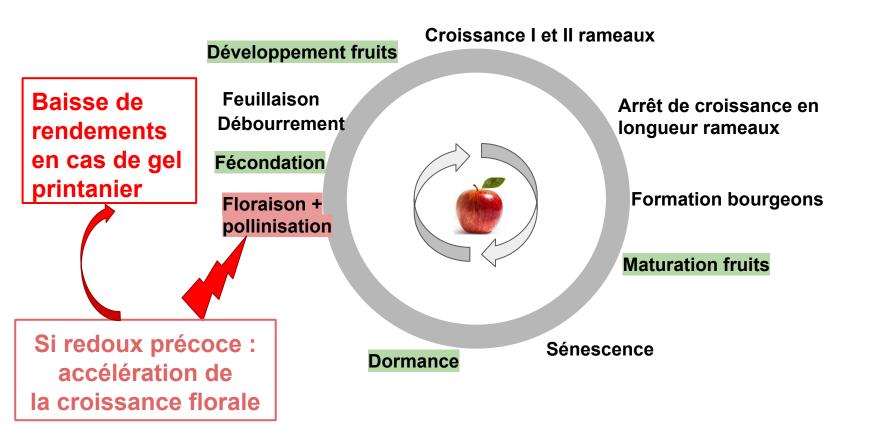
Nombre de jours où T° maximale > ou = à 32.0°C

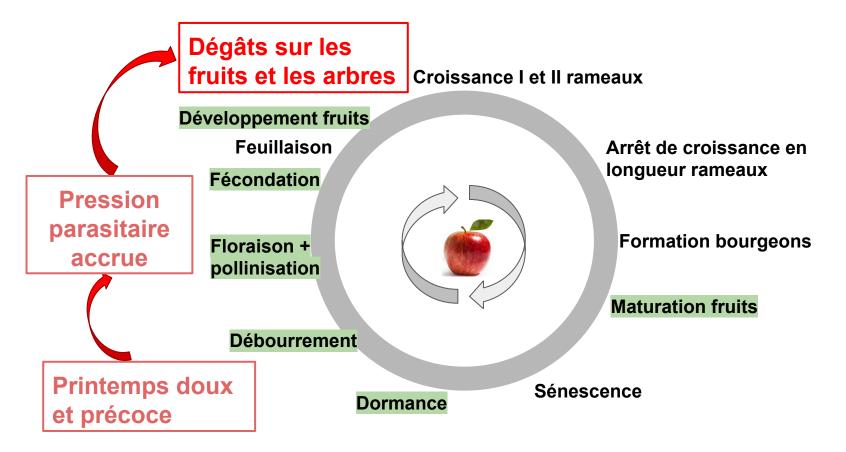

...et des phénomènes extrêmes.

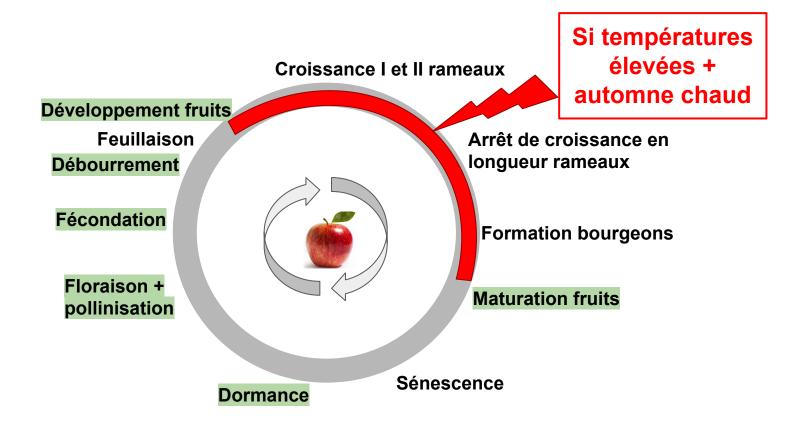

Canicules, inondations, orages violents, grêle, sécheresse

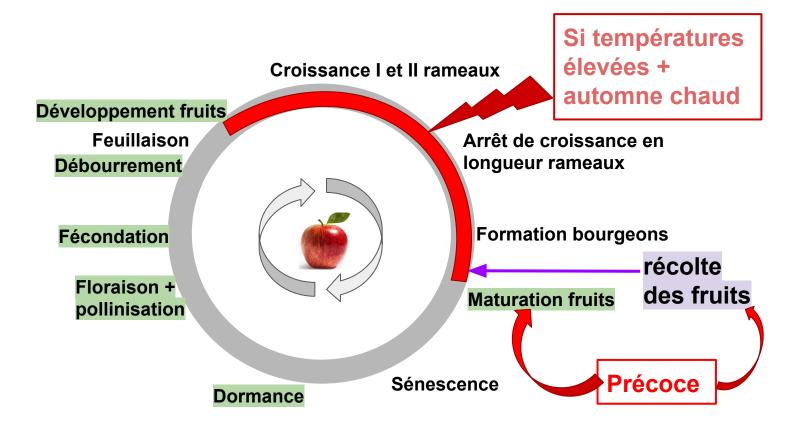


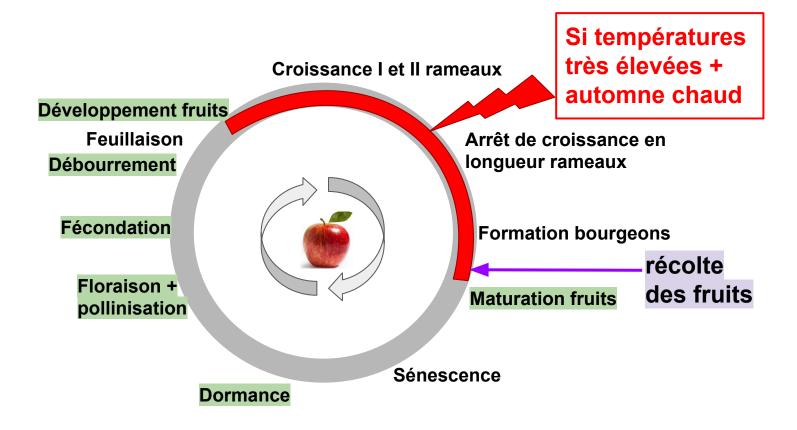


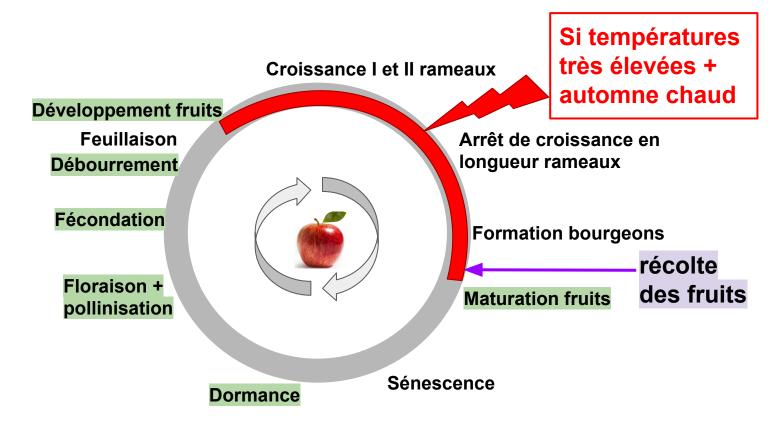

Cycle annuel de fonctionnement du verger : cas de la pomme











Cycle annuel de fonctionnement du verger : cas de la pêche

Croissance I et II rameaux

Sensibilité au soleil

Développement fruits

Feuillaison

Arrêt de croissance en longueur rameaux

Fécondation

Floraison + pollinisation (fin février → mars-avril)

Formation bourgeons

Forte consommation d'eau

Maturation fruits

Attaques de sharka

Débourrement

Régions à risque (Roussillon)

Dormance

Sénescence

III) Conséquences et perspectives socio-économiques

a) Des changements perceptibles?

Des ressentis différents selon la situation géographique : dans le Nord

Pommeraie du Courtil, Vergers de l'Alloeu

Fréquence des évènements climatiques: -grêle -gel -sécheresse (de plus en plus fréquente)

Disponibilité en eau

pas tellement d'impact, mais restreinte en période de sécheresse

Bioagresseurs

-Tavelure de la pomme -carpocapses -cochenilles -mouches suzukii

Impacts sur la production

Pertes dues au gel: jusqu'à 95% de la production

Des ressentis différents selon la situation géographique : dans le Bassin parisien

Maison Gaillard, Verger de la Reinette Verte

Fréquence des évènements climatiques: -sécheresse -gelées tardives -hivers doux -pluies irrégulières

Bioagresseurs:

-Carpocapse, anthonome et hoplocampe -Champignons

(tavelure, oïdium)

Disponibilité en eau

-Limitante

 (installation de systèmes
 d'irrigation : inédit

dans cette région)

Impacts sur la production

-Fruits plus sucrés
-Récoltes précoces
(environ 10 jours)
-Perte de

rendement

Des ressentis différents selon la situation géographique : dans le Sud

SiBio, Réart Vallée, Jardins du Roussillon

Fréquence des évènements climatiques

- -De base climat d'excès
- -Grêle (x6 en 2018)
- -Allongement de la période sèche

Disponibilité en eau

- -Facteur limitant
- -compensation / meilleure irrigation

Bioagresseurs

- -Virus de la Sharka (pêches, abricots)
- -Cloque de la pêche
- -Moniliose, Botrytis (humidité)

MAIS avantage du vent contre humidité!

Impacts sur la production

- Traitements moins efficaces en bio
- -Fruits et bois de moins bonne qualité (brûlures, griffures dues au vent)
 - -Perte de calibre

b) Des adaptations multiples déjà appliquées ou à envisager

Des adaptations à court et moyen terme: faire face

Adaptation des techniques culturales présentant des contraintes

Filet anti-grêle: 10 000€/ha

Canons anti-grêle

Ombrières et panneaux photo-voltaïque

Enherbement

Eolienne anti-gel 68000 € / 5 ha

Irrigation de précision

Des adaptations à moyen terme : ajuster

https://static.lecomptoirlocal.fr/img/produits/1315b3a5fc728604de4a0cecf70f8916/large.jpg

Sélection et diversification des variétés cultivées

Axes d'amélioration :

- → rusticité, résistance aux bioagresseurs
- → variétés et porte-greffes tolérants à la chaleur et au stress hydrique
- → adaptation phénologique (baisse du besoin en froid)
- → auto-fertilité

Il faut 5 à 10 ans avant de se rendre compte si le changement de variété était judicieux ou non

Des adaptations à long terme : transformer

https://jardinage.ooreka.fr/plante/voir/176/oranger

Changement d'espèces

- → Agrumes envisagé dans le Sud de la France :
 - Jardins en Roussillon: "Je mise plus sur les agrumes, la poire et la cerise que sur la pomme car ces fruits sont plus adaptés aux températures élevées."
 - **SiBio:** "Des gens commencent à faire de l'agrume dans le département mais c'est encore risqué (gel) mais il y a vraiment des essais qui sont faits en ce moment."
- → Pêches dans le Nord et Bassin Parisien ?
- → Nécessite la mise en place de nouvelles filières

c) Enjeux sociétaux liés à ces mutations

Pourquoi le changement climatique n'est-il pas systématiquement pris en compte dans la gestion des vergers ?

L'arboriculture, culture de long terme, aux évolutions difficiles à anticiper

La difficulté de remettre en question ses pratiques et son mode de travail

Un manque de moyens dans les petites structures

Des enjeux de court-terme qui restent prioritaires (rendement, rentabilité)

Des solutions existantes mais qui manquent souvent d'accessibilité / faisabilité

Un manque de sensibilisation et de formation aux adaptations possibles

Des leviers d'action limités

d) L'importance des consommateurs dans l'orientation des cultures fruitières

La place des consommateurs

- Contraintes de marché
- Antagonisme entre les qualités sensorielles attendues par les consommateurs et celles obtenues dans un contexte climatique délicat
- Problème de la rapidité du changement face à des mentalités qui évoluent lentement

Calibrage et contraintes de marché

Impacts de grêle = fruits "moches"

Des couleurs caractéristiques attendues...

Remerciements

- Notre professeure référente Madame Bancal
- Les chercheurs : M. Garcia De Cortazar (INRAE), M. Legave (INRAE)
- Mme Astier (Chambre d'Agriculture du Gard)
- M. Matthieu (CTIFL)
- M. Martinez (FFL)
- Les arboriculteurs : l'arboricultrice des vergers du Courtil, M.Therain, M. Gaillard, M. Batlle, Mme Glais, M Ciatonni, M. Giovanelli, Mme Traentlé

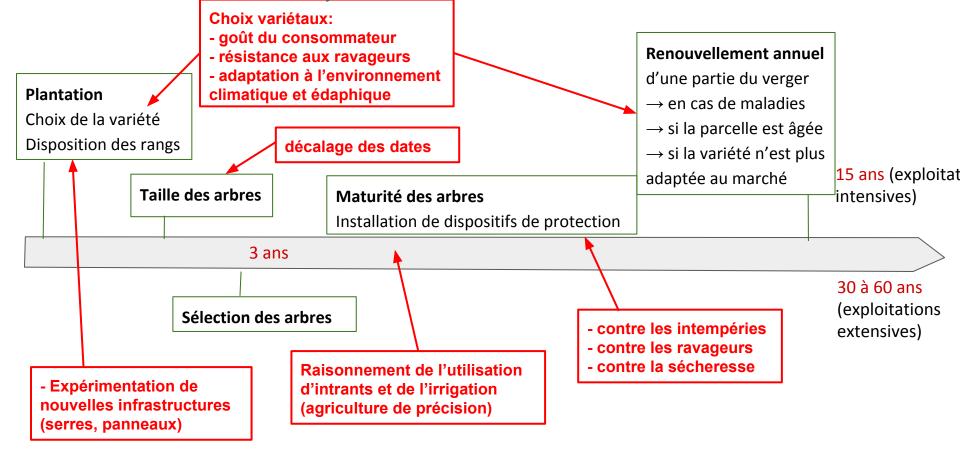
Un grand merci à eux pour leur patience et leur bienveillance au cours de nos entretiens.

La température a des influences sur :

Les processus de croissance et d'architecture

croissance des racines, pousses végétatives, fleurs, fruits

Floraison, feuillaison et dormance


- → levées de dormance insuffisantes
- → + d'avortements floraux (de + en + fréquents pour les abricots)
- → débourrement et floraison + précoces
- → organogénèse florale perturbée (pistils doubles)

Fructification et dissémination

→ perte de qualité (sucres, fermeté...) et de coloration des fruits, maturation des fruits

Parasitisme (indirecte)

- → + de générations d'insectes (ex carpocapse du pommier)
- → déplacement de maladies

Adaptations à l'échelle du cycle de vie du verger